Aditya Environmental Services Pvt. Ltd.							
Documents as per ISO/IEC 17025:2017			Doc No.: AESPL/LAB/QD/7.8.6.1/D-01				
Title: 'The Decision Rule'							
Issue No:02	Issue Date:01/10/22	Amend No:00	0 Amend Date:	Page 1 of 2			

The Decision Rule

AESPL has applied 'The Decision Rule' to the conformity assessment with a single tolerance without guard band. This is also termed as a Binary Decision Rule.

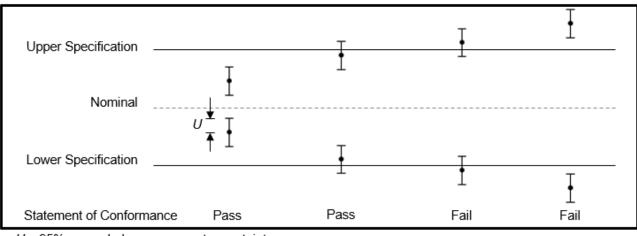
Definitions:

Decision Rule - Rule that describes how measurement uncertainty is accounted for when stating conformity with a specified requirement.

Simple Acceptance - A decision rule in which the acceptance limit is the same as the tolerance limit, i.e. *AL*=*TL*

Tolerance Limit (TL) (Specification Limit) - Specified upper or lower bound of permissible values of a property

Acceptance Limit (AL) - Specified upper or lower bound of permissible measured quantity values


A binary decision rule – It exists when the result is limited to two choices (pass or fail).

Representation:

Binary Statement for Simple Acceptance Rule (*w*=0)

Statements of conformity are reported as:

- Pass the measured value is below the acceptance limit, *AL* = *TL*.
- Fail the measured value is above the acceptance limit, *AL*=*TL*.

U = 95% expanded measurement uncertainty

Graphical representation of a Binary statement - Simple Acceptance

Prepared by:	Approved by:
(Deputy Quality Manager)	(Quality Manager)

Stamp:

Aditya Environmental Services Pvt. Ltd.							
Documents as per ISO/IEC 17025:2017			Doc No.: AESPL/LAB/QD/7.8.6.1/D-01				
Title: 'The Decision Rule'							
Issue No:02	Issue Date:01/10/22	Amend No:00	O Amend Date:	Page2 of 2			

Calculation: -

Decision rule applied to conformity assessment with a single tolerance upper limit

Given a single tolerance upper limit, Tu, and a measurement estimate y with measurement standard uncertainty of U(y), a decision rule should define a probability of conformity (Pc) assuming a probability of type I error (α).

Decision rule: -

Acceptance if the hypothesis $H_0: P (y \le Tu) \ge (1-\alpha)$ is true;

Rejection if the hypothesis H_0 : $P(y \le Tu) < (1-\alpha)$ is false.

Expression to test: $Pc = P(\eta \le Tu) = \Phi[Tu-y/U(y)]$

The value of $\Phi(z)$ can be obtained using tables of standard normal PDF or MS Excel function NORMDIST (x, mean, standard deviation, cumulative).

For this case, **NORMDIST (Tu; y; U(y); TRUE)** is the function used to calculate Pc.

Decision rule applied to conformity assessment with a single tolerance lower limit

Given a single tolerance lower limit, T_L , and a measurement estimate y with measurement standard uncertainty of U(y), a decision rule should define a probability of conformity (Pc) assuming a probability of type I error (α).

Decision rule: -

Acceptance if the hypothesis $H_0: P$ ($y \ge T_L$) $\ge (1-\alpha)$ is true;

Rejection if the hypothesis $H_0: P$ ($y \ge T_L$) < $(1-\alpha)$ is false.

Expression to test: $Pc = P(\eta \ge T_L) = \Phi[y-T_L/U(y)]$

The value of $\Phi(z)$ can be obtained using tables of standard normal PDF or MS Excel function NORMDIST (x, mean, standard deviation, cumulative).

For this case, **NORMDIST (y; TL; U(y); TRUE)** is the function used to calculate Pc.

References: -

- 1. Eurolab Technical Report No.1/2017 "Decision Rule Applied to Conformity Assessment"
- 2. ILAC-G8:09/2019 "Guidelines on Decision Rule and Statements of Conformity"
- 3. JCGM 106:2012 "Evaluation of Measurement Data"